metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(Z)-O-Ethyl-N-(o-tolyl)thiocarbamatoκS](triphenylphosphine-κP)gold(I)

Primjira P. Tadbuppa^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, National University of Singapore, Singapore 117543, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 13 November 2009; accepted 15 November 2009

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.008 Å; R factor = 0.031; wR factor = 0.104; data-to-parameter ratio = 19.3.

The title compound, $[Au(C_{10}H_{12}NOS)(C_{18}H_{15}P)]$, features a linear geometry for the Au atom defined by the S and P donor atoms. A small deviation from the ideal geometry is noted and is ascribed to an intramolecular Au···O contact [2.936 (4) Å]. Inversion dimers are formed in the crystal structure mediated by $C-H\cdots\pi$ interactions between centrosymmetrically related *o*-tolyl residues $[C\cdots Cg = 3.532$ (6) Å].

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho *et al.* (2006); Ho & Tiekink (2007); Kuan *et al.* (2008). For the synthesis, see Hall *et al.* (1993).

b = 10.1665 (6) Å

c = 13.9711 (8) Å

 $\alpha = 95.514 (1)^{\circ}$

 $\beta = 103.371 (1)^{\circ}$

Experimental

Crystal data
[Au(C ₁₀ H ₁₂ NOS)(C ₁₈ H ₁₅ P)]
$M_r = 653.50$
Triclinic, P1
a = 9.3378 (6) Å

 $\gamma = 98.334 (1)^{\circ}$ $V = 1265.11 (13) \text{ Å}^3$ Z = 2Mo K α radiation

Data collection

Bruker SMART CCD	8823 measured reflections
diffractometer	5772 independent reflections
Absorption correction: multi-scan	5279 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.023$
$T_{\min} = 0.311, \ T_{\max} = 1$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	299 parameters
$vR(F^2) = 0.104$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 1.62 \ {\rm e} \ {\rm \AA}^{-3}$
5772 reflections	$\Delta \rho_{\rm min} = -1.26 \text{ e } \text{\AA}^{-3}$

 $\mu = 5.98 \text{ mm}^{-1}$

 $0.24 \times 0.13 \times 0.03 \text{ mm}$

T = 223 K

Table 1				
Selected	geometric parameters	(Å,	°).	

Au-S1	2.3105 (11)	Au-P1	2.2509 (11)
P1-Au-S1	177.00 (4)		

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *PATTY* in *DIRDIF92* (Beurskens *et al.*, 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2009).

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2686).

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2000). *SMART, SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, U. S. A.

Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.

- Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.
- Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.
- Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, m1612 [doi:10.1107/S1600536809048466]

[(Z)-O-Ethyl-N-(o-tolyl)thiocarbamato-KS](triphenylphosphine-KP)gold(I)

P. P. Tadbuppa and E. R. T. Tiekink

Comment

The title compound, Ph₃Au[SC(OEt)*N*(*o*-tolyl), (I), was synthesized during the course of systematic studies of phosphinegold(I) thiocarbamides (Ho *et al.* 2006; Ho & Tiekink, 2007; Kuan *et al.*, 2008)..

The gold atom in (I) exists in a linear geometry defined by an *S*,*P* donor set, Table 1 and Fig. 1. The small deviation from linearity is due to the close approach of the O1 atom to Au [Au \cdots O = 2.936 (4) Å]. The anion, having C1—S1 = 1.768 (5) Å and C1N1 = 1.254 (6) Å, coordinates as a thiolate ligand. The configuration about the C1N1 double bond is *Z*.

In the crystal structure of (I), supramolecular dimers are formed between centrosymmetric pairs of *o*-tolyl residues owing to the presence of C—H··· π interactions whereby the π system is defined by the (C2–C7) ring; C8–H8c··· $Cg^{i} = 2.67$ Å, C8··· $Cg^{i} = 3.532$ (6) Å with an angle at H8c = 148 ° for *i*: -1 - *x*, 1 - *y*, -*z*.

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of Ph_3AuCl and EtOC(S)N(H)(o-tolyl) in the presence of base (Hall *et al.*, 1993).

Refinement

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The maximum and minimum residual electron density peaks of 1.62 and 1.26 e Å⁻³, respectively, were located 0.81 Å and 0.92 Å from the Au atom.

Figures

Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. The supramolecular dimer in (I) mediated by C—H $\cdots\pi$ contacts (purple dashed lines). Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.

[(Z)-O-Ethyl-N-(o-tolyl)thiocarbamato- κ S](triphenylphosphine- κ P)gold(I)

Z = 2

 $F_{000} = 640$

 $\theta = 2.3 - 29.9^{\circ}$

 $\mu = 5.98 \text{ mm}^{-1}$

Block, colourless

 $0.24\times0.13\times0.03~mm$

T = 223 K

 $D_{\rm x} = 1.716 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71069$ Å

Cell parameters from 5740 reflections

Crystal data

[Au(C₁₀H₁₂NOS)(C₁₈H₁₅P)] $M_r = 653.50$ Triclinic, PT Hall symbol: -P 1 a = 9.3378 (6) Å *b* = 10.1665 (6) Å *c* = 13.9711 (8) Å $\alpha = 95.514 (1)^{\circ}$ $\beta = 103.371 (1)^{\circ}$ $\gamma = 98.334 (1)^{\circ}$ $V = 1265.11 (13) \text{ Å}^3$

Data collection

Bruker SMART CCD diffractometer	5772 independent reflections
Radiation source: fine-focus sealed tube	5279 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 223 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -12 \rightarrow 11$
$T_{\min} = 0.311, \ T_{\max} = 1$	$k = -10 \rightarrow 13$
8823 measured reflections	$l = -17 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0692P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
5772 reflections	$\Delta \rho_{max} = 1.62 \text{ e } \text{\AA}^{-3}$
299 parameters	$\Delta \rho_{min} = -1.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Prin methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 0.03424 (8) Au 0.147930 (18) 0.358507 (16) 0.308910(12) **S**1 -0.00461(14)0.49405 (12) 0.22765 (9) 0.0352 (2) P1 0.0305 (2) 0.28887 (13) 0.21714 (12) 0.38273 (9) 01 -0.1318(4)0.2462(3)0.1600(3)0.0419 (8) N1 -0.2434(5)0.3967 (4) 0.0724 (3) 0.0392 (9) C1 -0.1424(5)0.3740(5)0.1420(3)0.0340(9)C2 -0.2509(5)0.5300(5)0.0506(4)0.0368 (10) C3 -0.3452(5)0.6059 (5) 0.0885 (3) 0.0375 (10) C4 -0.3575(6)0.7297(5)0.0590(4)0.0435(11)H4 -0.41980.7813 0.0840 0.052* C5 -0.2799(6)0.7804 (6) -0.0070(4)0.0483 (13) Н5 -0.28930.8658 -0.02560.058* C6 -0.1902(6)0.7060(6) -0.0448(4)0.0447 (12) H6 -0.1390 0.7395 -0.09030.054* C7 -0.1747(5)0.5813 (6) -0.0160(4)0.0412 (11) H7-0.11200.5307 -0.04170.049* C8 -0.4332 (6) 0.5472 (6) 0.1575 (4) 0.0461 (12) H8A -0.49310.6107 0.1765 0.069* H8B -0.36480.5289 0.2164 0.069* H8C -0.4981 0.069* 0.4645 0.1238 C9 -0.2431(6)0.1389 (5) 0.0974 (4) 0.0476 (12) H9A -0.19960.0572 0.0923 0.057* H9B -0.27350.1637 0.0305 0.057* C10 -0.3760(7)0.1122(7)0.1382 (5) 0.0568 (15) H10A -0.44840.0400 0.0952 0.085* H10B -0.42030.1925 0.1420 0.085* H10C -0.34620.0866 0.2040 0.085* C11 0.4272 (4) 0.0336 (9) 0.4873 (5) 0.2811 (5) C12 0.5675 (6) 0.2763 (5) 0.5233 (4) 0.0425 (11) H12 0.5166 0.2442 0.5694 0.051* C13 0.7199 (6) 0.3175 (6) 0.5527 (4) 0.0490 (13) H13 0.059* 0.7724 0.3139 0.6182 C14 0.7945 (6) 0.3639(6) 0.4854(5)0.0523 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14	0.8989	0.3902	0.5047	0.063*
C15	0.7178 (6)	0.3723 (6)	0.3895 (5)	0.0509 (13)
H15	0.7697	0.4056	0.3443	0.061*
C16	0.5622 (6)	0.3310 (5)	0.3600 (4)	0.0449 (11)
H16	0.5092	0.3372	0.2951	0.054*
C17	0.2775 (5)	0.0655 (4)	0.2989 (3)	0.0317 (9)
C18	0.3943 (6)	-0.0073 (5)	0.3093 (4)	0.0413 (11)
H18	0.4832	0.0241	0.3587	0.050*
C19	0.3800 (7)	-0.1259 (6)	0.2472 (4)	0.0479 (13)
H19	0.4599	-0.1736	0.2534	0.058*
C20	0.2469 (8)	-0.1739 (6)	0.1757 (5)	0.0550 (14)
H20	0.2355	-0.2559	0.1351	0.066*
C21	0.1319 (7)	-0.1011 (7)	0.1645 (5)	0.0578 (15)
H21	0.0427	-0.1331	0.1155	0.069*
C22	0.1467 (6)	0.0183 (6)	0.2245 (4)	0.0436 (11)
H22	0.0685	0.0682	0.2153	0.052*
C23	0.2305 (5)	0.1605 (5)	0.4895 (3)	0.0328 (9)
C24	0.2240 (6)	0.0302 (5)	0.5088 (4)	0.0389 (10)
H24	0.2465	-0.0348	0.4647	0.047*
C25	0.1840 (6)	-0.0054 (6)	0.5941 (4)	0.0478 (12)
H25	0.1777	-0.0949	0.6068	0.057*
C26	0.1532 (6)	0.0910 (6)	0.6604 (4)	0.0467 (12)
H26	0.1288	0.0670	0.7188	0.056*
C27	0.1583 (7)	0.2195 (6)	0.6411 (4)	0.0502 (13)
H27	0.1370	0.2843	0.6860	0.060*
C28	0.1950 (6)	0.2562 (5)	0.5551 (4)	0.0425 (11)
H28	0.1959	0.3449	0.5412	0.051*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au	0.03477 (12)	0.03251 (12)	0.03386 (12)	0.01184 (8)	0.00062 (8)	0.00697 (7)
S1	0.0354 (6)	0.0300 (5)	0.0369 (6)	0.0114 (4)	-0.0012 (5)	0.0052 (4)
P1	0.0305 (5)	0.0294 (6)	0.0300 (6)	0.0095 (4)	0.0012 (4)	0.0054 (4)
01	0.0446 (19)	0.0308 (17)	0.0437 (19)	0.0065 (14)	-0.0023 (15)	0.0060 (14)
N1	0.038 (2)	0.037 (2)	0.041 (2)	0.0108 (17)	0.0020 (17)	0.0072 (17)
C1	0.035 (2)	0.030 (2)	0.036 (2)	0.0089 (18)	0.0053 (19)	0.0039 (18)
C2	0.028 (2)	0.040 (3)	0.036 (2)	0.0070 (19)	-0.0033 (18)	0.0013 (19)
C3	0.039 (2)	0.041 (3)	0.030 (2)	0.011 (2)	0.0010 (19)	0.0030 (19)
C4	0.044 (3)	0.044 (3)	0.040 (3)	0.012 (2)	0.005 (2)	-0.001 (2)
C5	0.052 (3)	0.038 (3)	0.047 (3)	0.003 (2)	0.000 (2)	0.008 (2)
C6	0.044 (3)	0.045 (3)	0.043 (3)	0.004 (2)	0.004 (2)	0.012 (2)
C7	0.034 (2)	0.047 (3)	0.043 (3)	0.016 (2)	0.004 (2)	0.007 (2)
C8	0.048 (3)	0.053 (3)	0.039 (3)	0.015 (2)	0.011 (2)	0.005 (2)
C9	0.053 (3)	0.031 (2)	0.050 (3)	0.007 (2)	-0.002 (2)	-0.001 (2)
C10	0.047 (3)	0.053 (3)	0.065 (4)	0.005 (3)	0.002 (3)	0.013 (3)
C11	0.030 (2)	0.029 (2)	0.038 (2)	0.0040 (17)	0.0017 (18)	0.0047 (18)
C12	0.042 (3)	0.038 (3)	0.041 (3)	0.000 (2)	0.002 (2)	0.005 (2)

C13	0.039 (3)	0.042 (3)	0.052 (3)	0.005 (2)	-0.013 (2)	0.001 (2)
C14	0.034 (3)	0.038 (3)	0.077 (4)	0.000 (2)	0.002 (3)	0.004 (3)
C15	0.046 (3)	0.040 (3)	0.068 (4)	-0.002 (2)	0.023 (3)	0.007 (3)
C16	0.047 (3)	0.041 (3)	0.047 (3)	0.010 (2)	0.010 (2)	0.010 (2)
C17	0.033 (2)	0.028 (2)	0.034 (2)	0.0051 (17)	0.0085 (18)	0.0054 (17)
C18	0.046 (3)	0.041 (3)	0.036 (2)	0.009 (2)	0.008 (2)	0.003 (2)
C19	0.063 (4)	0.039 (3)	0.049 (3)	0.016 (3)	0.023 (3)	0.007 (2)
C20	0.075 (4)	0.039 (3)	0.051 (3)	0.005 (3)	0.023 (3)	-0.006 (2)
C21	0.057 (3)	0.058 (4)	0.047 (3)	-0.002 (3)	0.002 (3)	-0.007 (3)
C22	0.036 (2)	0.049 (3)	0.037 (3)	0.001 (2)	0.000 (2)	-0.001 (2)
C23	0.032 (2)	0.036 (2)	0.031 (2)	0.0124 (18)	0.0045 (17)	0.0039 (18)
C24	0.044 (3)	0.037 (2)	0.039 (3)	0.014 (2)	0.009 (2)	0.010 (2)
C25	0.056 (3)	0.045 (3)	0.046 (3)	0.010 (2)	0.015 (2)	0.013 (2)
C26	0.044 (3)	0.058 (3)	0.041 (3)	0.010 (2)	0.014 (2)	0.010 (2)
C27	0.050 (3)	0.059 (4)	0.042 (3)	0.014 (3)	0.016 (2)	-0.007 (3)
C28	0.047 (3)	0.037 (3)	0.045 (3)	0.015 (2)	0.011 (2)	-0.001 (2)

Geometric parameters (Å, °)

Au—S1	2.3105 (11)	C12—C13	1.375 (7)
Au—P1	2.2509 (11)	C12—H12	0.9400
S1—C1	1.768 (5)	C13—C14	1.373 (9)
P1—C11	1.812 (5)	С13—Н13	0.9400
P1—C23	1.817 (5)	C14—C15	1.382 (9)
P1—C17	1.819 (5)	C14—H14	0.9400
O1—C1	1.360 (6)	C15—C16	1.403 (8)
O1—C9	1.450 (6)	С15—Н15	0.9400
N1—C1	1.254 (6)	С16—Н16	0.9400
N1—C2	1.425 (6)	C17—C18	1.392 (7)
C2—C7	1.391 (7)	C17—C22	1.396 (6)
C2—C3	1.410 (7)	C18—C19	1.386 (8)
C3—C4	1.374 (7)	C18—H18	0.9400
C3—C8	1.514 (7)	C19—C20	1.392 (9)
C4—C5	1.390 (8)	С19—Н19	0.9400
C4—H4	0.9400	C20—C21	1.379 (9)
C5—C6	1.366 (8)	C20—H20	0.9400
С5—Н5	0.9400	C21—C22	1.377 (8)
C6—C7	1.384 (7)	C21—H21	0.9400
С6—Н6	0.9400	С22—Н22	0.9400
С7—Н7	0.9400	C23—C24	1.372 (7)
C8—H8A	0.9700	C23—C28	1.401 (7)
C8—H8B	0.9700	C24—C25	1.393 (7)
C8—H8C	0.9700	C24—H24	0.9400
C9—C10	1.482 (9)	C25—C26	1.390 (8)
С9—Н9А	0.9800	С25—Н25	0.9400
С9—Н9В	0.9800	C26—C27	1.356 (9)
C10—H10A	0.9700	C26—H26	0.9400
C10—H10B	0.9700	C27—C28	1.392 (8)
C10—H10C	0.9700	С27—Н27	0.9400

C11—C16	1.387 (7)	C28—H28	0.9400
C11—C12	1.387 (7)		
P1—Au—S1	177.00 (4)	C13—C12—C11	121.4 (5)
C1—S1—Au	101.39 (16)	C13—C12—H12	119.3
C11—P1—C23	105.3 (2)	C11—C12—H12	119.3
C11—P1—C17	104.4 (2)	C14—C13—C12	119.4 (5)
C23—P1—C17	105.6 (2)	C14—C13—H13	120.3
C11—P1—Au	116.15 (15)	C12—C13—H13	120.3
C23—P1—Au	112.80 (15)	C13—C14—C15	120.7 (5)
C17—P1—Au	111.68 (15)	C13—C14—H14	119.6
C1—O1—C9	117.5 (4)	C15—C14—H14	119.6
C1—N1—C2	120.8 (4)	C14—C15—C16	119.7 (5)
N1-C1-O1	120.6 (4)	C14—C15—H15	120.1
N1—C1—S1	127.0 (4)	C16—C15—H15	120.1
O1—C1—S1	112.4 (3)	C11—C16—C15	119.5 (5)
C7—C2—C3	119.5 (5)	C11—C16—H16	120.2
C7—C2—N1	119.5 (5)	C15—C16—H16	120.2
C3—C2—N1	120.7 (5)	C18—C17—C22	119.2 (5)
C4—C3—C2	118.4 (5)	C18—C17—P1	121.5 (4)
C4—C3—C8	122.2 (5)	C22—C17—P1	119.3 (4)
C2—C3—C8	119.3 (5)	C19—C18—C17	120.4 (5)
C3—C4—C5	121.6 (5)	C19—C18—H18	119.8
C3—C4—H4	119.2	C17—C18—H18	119.8
С5—С4—Н4	119.2	C18—C19—C20	119.8 (6)
C6—C5—C4	119.9 (5)	C18—C19—H19	120.1
С6—С5—Н5	120.1	С20—С19—Н19	120.1
С4—С5—Н5	120.1	C21—C20—C19	119.9 (5)
C5—C6—C7	120.0 (5)	С21—С20—Н20	120.0
С5—С6—Н6	120.0	С19—С20—Н20	120.0
С7—С6—Н6	120.0	C22—C21—C20	120.5 (6)
C6—C7—C2	120.6 (5)	C22—C21—H21	119.7
С6—С7—Н7	119.7	C20—C21—H21	119.7
С2—С7—Н7	119.7	C21—C22—C17	120.2 (5)
С3—С8—Н8А	109.5	C21—C22—H22	119.9
С3—С8—Н8В	109.5	С17—С22—Н22	119.9
H8A—C8—H8B	109.5	C24—C23—C28	119.6 (5)
С3—С8—Н8С	109.5	C24—C23—P1	122.8 (4)
H8A—C8—H8C	109.5	C28—C23—P1	117.6 (4)
H8B—C8—H8C	109.5	C23—C24—C25	119.9 (5)
O1—C9—C10	111.1 (5)	C23—C24—H24	120.1
О1—С9—Н9А	109.4	C25—C24—H24	120.1
С10—С9—Н9А	109.4	C26—C25—C24	120.2 (5)
O1—C9—H9B	109.4	C26—C25—H25	119.9
С10—С9—Н9В	109.4	C24—C25—H25	119.9
Н9А—С9—Н9В	108.0	C27—C26—C25	120.1 (5)
C9—C10—H10A	109.5	С27—С26—Н26	119.9
С9—С10—Н10В	109.5	С25—С26—Н26	119.9
H10A—C10—H10B	109.5	C26—C27—C28	120.4 (5)
С9—С10—Н10С	109.5	С26—С27—Н27	119.8

H10A—C10—H10C	109.5	C28—C27—H27	119.8
H10B-C10-H10C	109.5	C27—C28—C23	119.8 (5)
C16—C11—C12	119.2 (5)	C27—C28—H28	120.1
C16—C11—P1	117.8 (4)	C23—C28—H28	120.1
C12—C11—P1	123.0 (4)		
C2—N1—C1—O1	-177.2 (4)	C12-C11-C16-C15	1.7 (8)
C2—N1—C1—S1	4.3 (7)	P1-C11-C16-C15	-175.3 (4)
C9—O1—C1—N1	-1.4 (7)	C14-C15-C16-C11	-0.5 (8)
C9—O1—C1—S1	177.3 (4)	C11—P1—C17—C18	26.2 (4)
Au—S1—C1—N1	-171.6 (4)	C23—P1—C17—C18	-84.6 (4)
Au—S1—C1—O1	9.8 (4)	Au—P1—C17—C18	152.4 (4)
C1—N1—C2—C7	89.5 (6)	C11—P1—C17—C22	-156.2 (4)
C1—N1—C2—C3	-96.3 (6)	C23—P1—C17—C22	93.0 (4)
C7—C2—C3—C4	-0.7 (7)	Au—P1—C17—C22	-29.9 (4)
N1—C2—C3—C4	-174.9 (4)	C22—C17—C18—C19	-0.7 (7)
C7—C2—C3—C8	177.4 (5)	P1-C17-C18-C19	177.0 (4)
N1—C2—C3—C8	3.1 (7)	C17—C18—C19—C20	-1.5 (8)
C2—C3—C4—C5	0.2 (8)	C18—C19—C20—C21	2.3 (9)
C8—C3—C4—C5	-177.8 (5)	C19—C20—C21—C22	-0.9 (10)
C3—C4—C5—C6	0.7 (8)	C20—C21—C22—C17	-1.3 (9)
C4—C5—C6—C7	-1.1 (8)	C18—C17—C22—C21	2.1 (8)
C5—C6—C7—C2	0.6 (8)	P1-C17-C22-C21	-175.6 (4)
C3—C2—C7—C6	0.3 (7)	C11—P1—C23—C24	-93.8 (4)
N1—C2—C7—C6	174.6 (5)	C17—P1—C23—C24	16.3 (5)
C1—O1—C9—C10	-88.1 (6)	Au—P1—C23—C24	138.5 (4)
C23—P1—C11—C16	179.7 (4)	C11—P1—C23—C28	84.5 (4)
C17—P1—C11—C16	68.7 (4)	C17—P1—C23—C28	-165.4 (4)
Au—P1—C11—C16	-54.7 (4)	Au—P1—C23—C28	-43.2 (4)
C23—P1—C11—C12	2.8 (5)	C28—C23—C24—C25	-0.8 (8)
C17—P1—C11—C12	-108.2 (4)	P1-C23-C24-C25	177.5 (4)
Au—P1—C11—C12	128.4 (4)	C23—C24—C25—C26	-1.1 (8)
C16—C11—C12—C13	-1.3 (8)	C24—C25—C26—C27	1.7 (9)
P1-C11-C12-C13	175.5 (4)	C25—C26—C27—C28	-0.3 (9)
C11—C12—C13—C14	-0.3 (9)	C26—C27—C28—C23	-1.6 (9)
C12-C13-C14-C15	1.4 (9)	C24—C23—C28—C27	2.2 (8)
C13-C14-C15-C16	-1.0 (9)	P1—C23—C28—C27	-176.2 (4)

Fig. 1

Fig. 2